

Multi-scale detection and interpretation of spatio-temporal anomalies of human activities

Dr. Ximeng Cheng April 2021

Brief self introduction

- Ximeng Cheng, Ph.D.
 - ➤ Research Assistant of Institute of Remote

 Sensing and Geographical Information Systems,

 Peking University.
 - Research Interests: GIScience, spatio-temporal data mining, GeoAI, social sensing, urban studies, remote sensing, etc.
 - ➤ Email: chengximeng@pku.edu.cn

Background

Scale

Contents expressed at different scales

Background

Anomalies of human activities

- > Abnormal changes in activity characteristics caused by external events
- ➤ Nature events: rainfall, air pollution, etc.
- ➤ Social events: concerts, traffic accidents, etc.

Traffic accidents

Tourism Golden Week

Background

- Scales affect the anomaly detection and interpretation
 - > Scale affects the anomaly characteristics: influence intensity, time length, area, etc.
 - > Considering multiple scales is good at detect anomalies with different characteristics

Method

- Multi-scale anomaly detection method
 - > Four steps: data organization, time-series decomposition, anomaly detection, anomaly matching

Method

- Multi-scale anomaly detection method
 - > Data organization: Time-series at multiple spatio-temporal scales
 - > Time-series decomposition: STL method (Cleveland et al., 1990)

Data organization

STL method

Method

- Multi-scale anomaly detection method
 - > Spatio-temporal anomaly detection: Tukey boxplot + seeded region growing (SGR)
 - > Anomaly matching: Overlap ratio of spatio-temporal influence ranges

$$\frac{Overlap(IR_i, IR_j)}{IR_j} \ge K$$

$$\frac{f(TIR_i, TIR_j)}{TIR_j} \cdot \frac{g(SIR_i, SIR_j)}{SIR_j} \ge k^2$$

Anomaly matching at different spatial scales

- Simulation of multi-temporal-scale anomaly detection
 - > Data is generated according to known probability distributions
 - > Multi-scale method vs Single-scale method

Anomaly detection accuracy

Scale	Anomaly #1	Anomaly #2	Anomaly #3	Total
Scale #1	0.90	0.89	0.67	0.82
Scale #2	0.83	0.99	0.91	0.91
Scale #3	0.24	0.90	0.98	0.71
Multi-scale	0.95	0.99	0.98	0.98

- Case study of multi-spatial-scale anomaly detection
 - ➤ Data: Taxi origin and destination points (OD)
 - > Study area: Center of Beijing, $32 \times 32 \text{ }km^2$ square area
 - > Collected time: 01/08/2016 to 31/10/2016
 - > Spatial unit form: Regular grids
 - > Spatial unit size: From $1 \times 1 \ km^2$ to $32 \times 32 \ km^2$ (six scales)
 - ➤ Temporal unit size : one hour
 - ➤ Time-series length: 2208

- Case study of multi-spatial-scale anomaly detection
 - > Spatio-temporal anomaly detection

Anomaly detection at the coarsest scale

Visualization of influence range example

- Case study of multi-spatial-scale anomaly detection
 - > Anomaly matching at different spatial scales
 - > Matching relationships: Creation, loss, continuation, splitting, and merging

- Anomaly interpretation from a multiscale perspective
 - ➤ Sample #1: Occurred on 15 Sep 2016
 - ➤ Coarse holiday arrangement data: the Mid-Autumn Festival (a traditional Chinese festival)
 - ➤ Fine points of interest (POI) data: Units with many transport POIs are more affected

Expressed spatial influence ranges at six scales

- Anomaly interpretation from a multiscale perspective
 - ➤ Sample #2: Occurred on 26 Aug 2016
 - ➤ Coarse mega-event data: the National Stadium, a Mayday (Chinese band) concert
 - ➤ Fine subway station data: Four nonadjacent zones are all close to subway stations

Expressed spatial influence ranges at four scales

Conclusions

Conclusions

- > Scales are important in spatio-temporal anomaly detection of human activities
- > The proposed multi-scale method has good anomaly detection performance
- ➤ Multi-scale characteristics of anomalies help the anomaly interpretation

Other

- ➤ Cheng, X., et al., 2021. Multi-scale detection and interpretation of spatio-temporal anomalies of human activities represented by time-series. *Computers, Environment and Urban Systems*, 88, 101627. https://doi.org/10.1016/j.compenvurbsys.2021.101627
- ➤ Data and codes: https://github.com/GISCheng/multi-scale-anomaly

Thanks! chengximeng@pku.edu.cn